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This is the first part of a series devoted to the study of thermodynamic behavior 
of large dynamical systems with the use of a family of fully-discrete and conser- 
vative models named elementary reversible cellular automata (ERCAs). In this 
paper, basic properties such as conservation laws and phase space structure 
are investigated in preparation for the later studies. ERCAs are a family of 
one-dimensional reversible cellular automata having two Boolean variables 
on each site. Reflection and Boolean conjugation symmetries divide them into 
88 equivalence classes. For each rule, additive conserved quantities written in a 
certain form are regarded as a kind of energy, if they exist. By the aid of the 
discreteness of the variables, every ERCA satisfies the Liouville theorem or the 
preservation of phase space volume. Thus, if an energy exists in the above sense, 
statistical mechanics of the model can formally be constructed. If a locally 
defined quantity is conserved, however, it prevents the realization of statistical 
mechanics. The existence of such a quantity is examined for each class and a 
number of rules which have at least one energy but no local conservation laws 
are selected as hopeful candidates for the realization of thermodynamic 
behavior. In addition, the phase space structure of ERCAs is analyzed by 
enumerating cycles exactly in the phase space for systems of comparatively small 
sizes. As a result, it is revealed that a finite ERCA is not ergodic, that is, a large 
number of orbits coexist on an energy surface. It is argued that this fact does 
not necessarily mean the failure of thermodynamic behavior on the basis of an 
analogy with the ergodic nature of infinite systems. 

KEY WORDS:  Reversible cellular automaton; statistical mechanics; thermo- 
dynamic behavior; ergodic properties; additive invariant; phase space structure. 

t Research Institute for Fundamental Physics, Kyoto University, Kyoto 606, Japan. 
Z Present address: Department of Physics, Faculty of Science, Gakushuin University, 

Toshima-ku, Tokyo 171, Japan. 

371 

0022-4715/89/0800~0371506.00/0 �9 1989 Plenum Publishing Corporation 



372 Takesue 

1. I N T R O D U C T I O N  

Although statistical mechanics has more than a century of successful 
history since the age of Boltzmann, its dynamical foundation has not been 
established as yet. Even the use of the Gibbs ensemble, which plays the 
central role in statistical mechanics, is postulated as an Ansatz and has not 
been derived from first principles, that is, microscopic dynamics of the 
system. 

It is ergodic theory that should link the dynamics and statistical 
mechanics. Ergodic theory has been developed considerably by mathe- 
maticians and has produced a variety of concepts and theorems. For exam- 
ple, a hierarchy of ergodic-theoretic properties has been found: Bernoulli > 
K-property>mixing>ergodicity, where the inequalities represent the 
strength of these properties; every Bernoulli system is a K-system, every 
K-system is mixing, and every mixing system is ergodic. (t/Of these proper- 
ties, ergodicity justifies the use of microcanonical ensemble and mixing 
implies a kind of relaxation property. As the Kolmogolov-Arnol'd-Moser 
theorem (2) has revealed, however, even ergodicity is not generic for 
mechanical systems with a finite number of degrees of freedom. On the 
other hand, the Bernoulli property, the top of the hierarchy, is achieved 
by such simple infinite systems as the noninteracting ideal gas, (3'4~ the 
complete harmonic crystal, (5) and the one-dimensional hard rod system/3) 
Although this looks strange, it only means that local perturbations can 
escape to infinity in such systems. It is, therefore, not very relevant to 
physics; for example, these infinite systems show relaxation only in some 
physically limited situations. Thus, the study of asymptotic behavior of 
large systems is needed. 

Reversible cellular automata provide clear examples to investigate the 
problem. (6) A cellular automaton is a dynamical system composed of dis- 
crete variables on a discrete space-time. (7) The states of all the variables are 
synchronously updated at every time step according to a deterministic rule 
which is locally defined and uniform in space. If a cellular automaton is 
reversible or bijective, that is, if each configuration has a unique prede- 
cessor, it automatically satisfies the Liouville theorem or the preservation 
of phase space volume by virtue of the discreteness of the variables. Conse- 
quently, the statistical mechanics of the model can be constructed, provided 
that it has a global conserved quantity which can be regarded as a kind of 
energy. Examples of such quantities have been shown by Pomeau (8) for a 
particular type of reversible cellular automata having "voting" rules. Other 
examples will be shown later in this paper. In such cases, one can compare 
the results of the statistical mechanics (ensemble averages) with those of 
dynamics (time averages). This is a test of ergodicity in the physical sense. 
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Equilibrium properties can be investigated in this manner. Nonequilibrium 
behavior is capable of being studied in a similar manner within the scope 
of linear response theory. In any case, numerical simulations are always 
possible. 

The relation between dynamics and statistical mechanics is usually 
studied in relation to Hamiltonian systems/9~ The formalism of statistical 
mechanics only demands the preservation of phase space volume and 
energy conservation. The symplectic condition for dynamics is not 
necessary as concerns the problem of the foundation of statistical 
mechanics. In this sense, the reversible cellular automata satisfy the condi- 
tions for statistical mechanics to be discussed. Furthermore, the contrast 
between Hamiltonian systems and the reversible cellular automata may 
elucidate some role of the symplectic condition which is not appreciated 
from the study of only Hamiltonian systems. 

Recent applications of cellular automata as a tool of numerical simula- 
tions are also relevant to the present problem. The features of cellular 
automata are strikingly suitable for execution by digital computers, 
especially with the help of massively parallel processing architecture. In 
particular, cellular automata are fast and free from roundoff errors. Thus, 
large-scale simulations may comparatively easily be carried out by utilizing 
cellular automata. Taking advantage of this, a number of deterministic 
Ising dynamics, such as Creutz's model, (1~ Q2R, (H 13) and their varia- 
tions, (14'15) have been devised as an alternative to Monte Carlo calcula- 
tions, and lattice-gas automata for simulations of the Navier-Stokes equa- 
tion. (~6) Both of these are reversible cellular automata constructed so as to 
satisfy necessary symmetries and conservation laws at the microscopic 
level. They are no more than crude approximations or artifacts on this 
microscopic level. Nevertheless, their macroscopic nature is expected to be 
physical, if they show standard thermodynamic behavior (17) with respect to 
such points as equilibrium statistics described by a canonical ensemble, 
relaxation to equilibrium, local equilibrium in a nonequilibrium steady 
state, and the Kubo formula for transport coefficients. Although successful 
simulation results have been reported, it has not been clarified for what 
conditions the thermodynamic behavior is realized. This is just the problem 
which I will consider. 

One great advantage of a study of cellular automata lies in the fact 
that the number of possible rules is finite if the shape of the lattice, the 
number of distinct values for variables on each site, and the interaction 
range are specified. Thus, one can thoroughly investigate all the models 
that belong to a fairly general set and classify them according to some 
physical or mathematical properties. The classification thus obtained will 
be useful for the construction of a general theory. This follows the 

822/56/3-4-9 
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approach taken by Wolfram. (18) In his pioneering work, he studied a family 
of one-dimensional cellular automata and classified them into four classes 
according to qualitative differences of spatiotemporal patterns generated. 
In the present series of papers, I present a family of one-dimensional 
reversible cellular automata called elementary reversible cellular automata 
(ERCAs), (6~ which can be seen as a second-order variant of Wolfram's 
models. Energy is introduced for some ERCAs, which then are classified 
with respect to the degree of realization of thermodynamic behavior. In the 
course of the study, various stages of thermodynamic behavior will be 
observed in a number of models. Thus, it is concluded that ERCAs serve 
as a minimal model for the study of the thermodynamic behavior of large 
dynamical systems. 

This paper is the first part of a series which concerns basic properties 
of ERCAs such as conservation laws and phase space structure. On the 
basis of the knowledge obtained here, the realization of equilibrium and 
nonequilibrium thermodynamic behavior will be examined in the subse- 
quent papers. In Section 2, the models are defined and classified according 
to symmetry properties. In Section 3, ERCAs are searched for additive con- 
served quantities in a certain form, which are regarded as energy if they 
exist. In Section 4, the existence of local conservation laws, which prevent 
the realization of the statistical mechanics, is examined for each rule. As a 
result of Sections 3 and 4, a subset of rules which have additive conserved 
quantities but no local conservation laws is selected for later use in the 
subsequent papers. Phase space structure of ERCAs is investigated in 
Section 5, where it is revealed that a large number of orbits coexist on an 
energy surface in a finite ERCA. This fact does not immediately mean the 
failure of thermodynamic behavior, however. Section 6 is devoted to a 
summary and discussion. 

2. M O D E L S  A N D  S Y M M E T R I E S  

ERCAs are a family of one-dimensional reversible (bijective) cellular 
automata where each site i has two Boolean variables a~ and ~ evolving 
according to a rule of the following form(6~: 

0"~ +1 =f(a~ ~, a~, a ~ + t ) X O R 6  ~ (2.1) 

~+1 =0"~ (2.2) 

where integer t denotes discrete time, f is a Boolean function of three 
variables, and XOR means the "exclusive OR" operation. All the Boolean 
variables and functions take values in the set of {0, 1 }, which are treated 
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as integers with the usual arithmetic. For such variables a and #, 
a XOR # = a + # - 2 a #  in the usual representation. Equations (2.1) and 
(2.2) have another representation of the second-order difference form: 

al +1 = f ( a f _  l, a~, a~ + t) XOR a~- '  (2.3) 

From this equation the time-reversal evolution is explicitly obtained as 

a~ l = f ( a f _  1, a~, a~+,)XOR O'I +1 (2.4) 

which has just the same form as Eq. (2.3). That is, ERCAs are not only 
reversible, but also time-reversal invariant, as are classical mechanical 
systems. 

The use of the term "elementary" (the E of ERCAs) is after Wolfram. 
He studied one-dimensional cellular automata having the following form of 
time evolution rules(IS): 

0"~ +1 =f(a~_  1, a~, af+l) (2.5) 

and referred to them as "elementary rules." ERCAs are their second-order 
generalizations. In general, when a first-order rule is given as 

a~ +1 =f ({@}j~  ~:) (2.6) 

with arbitrary variables {a~}, arbitrary neighborhood Ui of site i, and an 
arbitrary function f one can construct a time-reversal invariant second- 
order rule as 

a~ +I =f ( {a~} j~L: , ) -a1-1  (2.7) 

This is called a Fredkin construction. (n) Though they have not been 
referred to by this name, ERCAs are mentioned in a nfimber of papers. (7'19) 
However, almost all of their descriptions are fragmentary. The present 
paper is the first attempt at their systematic research. 

ERCAs contain as many rules as there are possible Boolean functions 
of three variables, namely 223= 256 rules. An ERCA specified by such a 
Boolean function f is termed f R  or the number Zu .... 24~+2v+~f(#, v, ~r 
with an R standing for "reversible" appended to it. This coding for the 
Boolean function is the same as Wolffam's. For example, the rule with the 
function f (# ,  v, ~c) = # XOR ~c is called 90R. 

As is known from the above definition, 5~ is introduced only to make 
the dynamics be second order. It never is the variable conjugate to a~ as is 
the momentum to the position in Hamiltonian dynamical systems. In fact, 
it is impossible to introduce the symplectic condition for ERCAs, since it 
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is based on the differential structure. Of course, some analogies will survive 
as a benefit of the reversibility and in some cases the use of these analogies 
will be a n  aid for understanding. 

Consider a system which is an N-site chain with the cyclic boundary 
condition imposed to keep reversibility. The set of values for the Boolean 
variables at time t is denoted by 

x t =  (~', 6 t) (2.8) 

where the Boolean N-vectors ~t and 6 t are given by 

o ' =  (o'1,..., a~v) (2.9) 

6t  ~t = (o-1 ..... 6~v) (2.10) 

In this vector notation an ERCA dynamics which is the set of local rules 
(2.1) is written as 

ot+l = f(~,) XOR 6' (2.11) 

where f(~) is an N-vector Boolean function given by 

f (~)=(f(~TN, 61, ff2),f(61,~72,~Y3),...,f(ff N i, 0"N, 0"1)) (2.12) 

and for Boolean N-vectors a = (~i) and [I = (/~i), a XOR p is defined by 
XOR L). 

The phase space for such an ERCA is the set of possible configurations 
for the dynamical variables, 

oN-- 6)= (6,,..., 0N)} 
~- {0, 1) 2N (2.13) 

which therefore consists of 4 N points. The ERCA dynamics is a bijective 
mapping of the phase space g2N onto itself. Hence, the phase space volume 
is preserved in ERCAs. This is due to the discreteness of the variables. An 
orbit of an ERCA is a set of points, { x ' = ( o ' , 6 ' ) } _ ~ < , < ~ .  Because 
6 ' =  ~ - 1 ,  the orbit can be completely represented by the set {or} ~ < t< 
only. Since the number of points in the phase space is finite and the time 
evolution is reversible, any orbit is a cycle or a periodic orbit. This cycle 
corresponds to the Poincar6 recurrence. The distribution of cycle lengths is 
investigated in Section 5. 

Two symmetries lead to isomorphisms between rules. Orbits in 
corresponding rules, as well as the rules themselves, can be one-to-one 
transformed into each other by the symmetry operations. Such rules are 
grouped into an equivalence class and can be seen as identical, because 
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they have the same structure of the phase space. One such symmetry is 
reflection, and the other is Boolean conjugation. (m 

Reflection means left-right inversion. Rule gR with the Boolean 
function g defined by 

g(kt, v, to) = f(~c, v, ~) (2.14) 

is called the reflection of rule fR.  An orbit in the reflection, {~t}, can be 
made from an orbit {o ~} in ru le fR  by the transformation 

~b~ ' (2.15) ~ 'O 'N i 

Boolean conjugation is exchange of the roles of 0 and 1. Thus, the 
transformation between orbits {~'} and {~'} in the corresponding rules 
must be given by 

~ = 1 - a~ (2.16) 

This is achieved by the transformation of Boolean function 

h(#, v, ~c) = f ( 1  - # ,  1 - v ,  1 -~c) (2.17) 

and the rule hR is called the conjugate of rule fR.  It should be noted that 
this operation is different from the Boolean conjugation for Wolfram's 
elementary cellular automata. In the latter case, the following is the trans- 
formation leading to Eq. (2.16)3: 

h(~t, v, ~c)= 1 - f ( 1  - # ,  l - v ,  1 - K )  (2.18) 

This is the combination of the transformation (2.17) and one, called the 
complement by Vichniac, (m for reversible rules of Fredkin-construction 
type whose transformation is written as 

h(p, v, ~c)= 1 -f( /~,  v, ~c) (2.19) 

The complement does not generally lead to isomorphisms, but yields a 
number of interesting relations between orbits discussed in Appendix A. 

As is shown in Table I, the reflection and the Boolean conjugation 
symmetries divide ERCAs into 88 equivalence classes. Each class is denoted 
by the minimal numbered representative in a bracket as, say, [OR]. Except 
for the case particularly stated, henceforth I treat only the minimal 
numbered representatives, which are shown in the first column in Table I. 

3 Due to this difference, Wolfram's elementary cellular au tomata  have a classification of rule 
numbers  different from the present one. Accordingly, a Wolfram rule and its second-order 
variant of ERCA do not  necessarily have similar characteristics, though they are denoted by 
a common number.  
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Rule Conj Refl CR Comp 

OR OR OR OR [255R] 
1R 128R IR 128R [127R] 
2R 64R 16R 8R [191R] 
3R 192R 17R 136R [63R] 
4R 32R 4R 32R [223R] 
5R 160R 5R 160R [95R] 
6R 96R 20R 40R [159R] 
7R 224R 21R 168R [31R] 
9R 144R 65R 130R [ l l l R ]  

10R 80R 80R 10R [175R] 
l lR  208R 81R 138R [47R] 
12R 48R 68R 34R [ 187R~ 
13R 176R 69R 162R [79R] 
14R 112R 84R 42R [143R] 
15R 240R 85R 170R [15R] 
18R 72R 18R 72R [183R] 
19R 200R 19R 200R [55R] 
22R 104R 22R 104R [151R] 
23R 232R 23R 232R [23R] 
24R 24R 66R 66R [189R] 
25R 152R 67R 194R [61R] 
26R 88R 82R 74R [167R] 
27R 216R 83R 202R [-39R] 
28R 56R 70R 98R [157R] 
29R 184R 71R 226R [29R] 
30R 120R 86R 106R [135R] 
31R 248R 87R 234R [7R] 
33R 132R 33R 132R [123R] 
35R 196R 49R 140R [59R] 
36R 36R 36R 36R [219R] 
37R 164R 37R 164R [91R] 
38R 100R 52R 44R [-155R] 
39R 228R 53R 172R [27R] 
41R 148R 97R 134R [107R] 
43R 212R l13R 142R [43R] 
45R 180R 101R 166R [75R] 
46R l16R l 1 6 R  46R [139R] 
47R 244R l17R 174R [ l l R ]  
50R 76R 50R 76R [ t79R] 
51R 204R 51R 204R [51R] 
54R 108R 54R 108R [147R] 
55R 236R 55R 236R [19R] 
57R 156R 99R 198R [-57R] 
58R 92R l14R 78R [141R] 

Rule Conj Refl CR Comp 

59R 220R l15R 206R [35R] 
60R 60R 102R 102R [153R] 
61R 188R 103R 230R [25R] 
62R 124R l18R IlOR [131R] 
63R 252R l19R 238R [3R] 
73R 146R 73R 146R [109R] 
75R 210R 89R 154R ~45R] 
77R 178R 77R 178R E77R] 
79R 242R 93R 186R [13R] 
90R 90R 90R 90R [165R] 
91R 218R 91R 218R [37R] 
94R 122R 94R 122R [133R] 
95R 250R 95R 250R [5R] 
05R 150R 105R 150R [-105R] 
07R 214R 121R 158R [41R] 

109R 182R 109R 182R [73R] 
l l l R  246R 125R 190R [9R] 
123R 222R 123R 222R [33R] 
126R 126R 126R 126R [129R] 
127R 254R 127R 254R [1R] 
129R 129R t29R 129R [126R] 
131R 193R 145R 137R [62R] 
133R 161R 133R 161R [94R] 
135R 225R 149R 169R [30R] 
139R 209R 209R 139R [46R] 
141R 177R 197R 163R [58R] 
143R 241R 213R 171R [14R] 
147R 201R 147R 201R [54R] 
151R 233R 151R 233R [22R] 
153R 153R 195R 195R [60R] 
155R 217R 211R 203R [38R] 
157R 185R 199R 227R [28R] 
159R 249R 215R 235R [-6R] 
165R 165R 165R 165R [90R] 
167R 229R 181R 173R [26R] 
175R 245R 245R 175R [10R] 
179R 205R 179R 205R [50R] 
183R 237R 183R 237R [-18R] 
187R 221R 243R 207R [12R] 
189R 189R 231R 231R [24R] 
191R 253R 247R 239R [-2R] 
219R 219R 219R 219R [36R] 
223R 251R 223R 251R [4R] 
255R 255R 255R 255R EOR] 

a The first column only contains the minimal numbered representatives of the classes. "Conj" 
denotes the Boolean conjugation, "Refl" denotes the reflection, and "CR" denotes the com- 
bined operation of the Boolean conjugation and the reflection. These four constitute a class. 
The last column shows its complement class. 
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3. ADDITIVE CONSERVED QUANTITIES 

As stated in Section 1, energy must be introduced to construct the 
statistical mechanics of ERCAs. However, an ERCA is defined as a time- 
evolution rule and does not have an a pr ior i  Hamiltonian. Hence, I define 
an energy as an additive conserved quantity. The additivity means that the 
energy must be written as a sum of local quantities. I here choose as 
candidates for energy the following form of additive quantities: 

e ( x )  = Y F (~ ,  o-~+ ~, a~, ~,+1) (3.1) 
i 

where x = (~, ~) denotes a point in the phase space s N. The constraint that 
the function F depends upon two adjacent sites is made only for simplicity, 
but it equips the quantity ~ with the picture that bond (i, i +  1) has an 
energy 

t At At 
F;,i+ , = F(o-;, O-i+  1 '  O ' i '  0 " i + 1 )  ( 3 . 2 )  

at time t. If such a quantity exists, the partition function Z is given by 

Z =  ~ e x p [ - / ~ ( x ) ]  
X e ~ N  

= ~ . . . ~  lqexp[- /~F(o- i ,o- i+l ,5 ; ,d i+~)]  (3.3) 
o'1, ~1 ,..., eYN,~ N i 

which has a form similar to the one-dimensional Ising system and therefore 
can be evaluated with the method of transfer matrix. Thermodynamic 
quantities are calculated through the partition function or the transfer 
matrix. 

Here, what is to be solved first is to find F such that q~ be an invariant 
for given f Now I examine this for each of the 88 representatives obtained 
in Section 2. 

First consider a general form of the function F. Because this function 
is of four Boolean variables, its arguments take 2 4=  16 possible values. 
Thus, 16 parameters are needed to determine such a function in general. In 
the present case, however, the number can be reduced by utilizing the facts 
that the zero value of an energy can be arbitrarily chosen and that F is a 
function to be summed over sites. The former permits one to put 
F(0, 0, 0, 0 ) =  0. The latter implies that a value of ~(x)  is determined by 
only the set of numbers, each representing the frequency of a two-site 
configuration appearing in the phase point x." These numbers satisfy the 
following sum rules: denoting by ~(a, b, c, dl x) the number of sites i such 
that (o-i, a i+l ,  ~/, ~i+1)= (a, b, c, d) in x =  (~, ~), one has 
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~(a, O, b, O lx) = ~ zr(O, a, O, b lx) (3.4a) 
a,b a,b 

y'  re(a, O, b, 1 Ix) = ~ re(O, a, 1, b lx) (3.4b) 
a,b a,b 

~(a, 1, b, Olx)=  ~ 7r(1, a, O, b lx )  (3.4c) 
a,b a,b 

7r(a, 1, b, l l x ) =  • re(l, a, t, blx )  (3.4d) 
a,b a,b 

Only three of these are independent. By the utilization of the above two 
facts, the number of the necessary parameters is reduced by four. A general 
form of the function F is written as 

+ + + + + + 

(3.5) 

with the use of 12 parameters {be~. 
Substituting the above form into the equation ~ '+  1 = ~b' and represen- 

ting the variables at time t +  1 by those at time t with the use of Eqs. (2.1) 
and (2.2), I obtain the following set of equations for {be} as the necessary 
and sufficient condition that q~ be conserved: 

bl =b2 (3.6a) 

b 3 =- b 4 (3.6b) 

b8 + b9 = blo + bet (3.6c) 

2(b3 + bs f i  + bg~ri~ 1 + bt2f  i f  i+ 1 ) ( f i -  fi+ ~)2 

= (b 8 - b~o)(ai- re+ 1) (3.6d) 

{4b~ + 2b 3 + (2b7 + bs) fg t + (4b5 + b8 + b9) fe + (2b6 + b9) fie+ 

+ ( 2 b ~ o + b 1 2 )  f e  t o ' /} f /  

= Eb7 - b 6 -~- ( b  8 - b l o ) ( f  / -~- 1 / 2 ) ] ( o - / _  1 - ~  1 ) ( 3 . 6 e )  

where f e = f ( f i _ t ,  fi ,  ae+~) and the last two equations have to hold for 
arbitrary values of (f~ 1, ai, a~+~, ae+2). The derivation of these equations 
is explained in detail in Appendix B. 

These equations always have the trivial solution that all b e = 0. Other 
solutions are, if they exist, determined up to the ratio among parameter 
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Rule b l = b  2 b 3 = b  4 b5 b6 bv b8 b9 blo bll hi2 

OR 1 

1 l 
1 1 

1 1 

1R 1 
1 1 

1 1 
1 1 

2R 1 - 2  - 2  

1 1 

3R 1 
1 1 

4R 1 - 1 
1 - 1  - 1  - 1  - 1  

1 1 

5R 1 1 

6R 1 - 1  - 2  - 2  
1 

7R 1 

9R 1 - 2  - 2  
1 - 2  - 2  2 

10R 1 --2 - 2  
1 - -2  - 2  2 

l l R  1 2 - 2  2 

12R 1 - I  
1 1 1 - 1  - 1  - 1  - i  1 

Nontrivial solutions {b,} for (3.6a)-(3.6e) are shown. Blank means  that the value is zero. 
Rules absent from this table do not  have any additive invariants of the form (3.1). 
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Table II. (Continued) 

Rule b l = b  2 b3=b 4 b 5 b 6 b7 b8 b9 blo bll b12 

18R 1 - 2  --2 
1 

1 

19R 1 - 2  - 1  - 1  2 2 2 2 
1 

1 

22R 1 - 1  --2 - 2  
1 

23R 1 - 2  - 1  --1 - 1  2 2 2 2 
1 

24R 1 - 2  - 2  

26R 1 - 2  - 2  

27R 2 - 4  --3 - 2  - 2  4 4 4 4 - 4  

33R 1 
1 

35R 1 
1 

36R 1 --1 - 1  1 
1 - 1  - 1  - 1  - 1  

1 

37R 1 

38R 1 

39R 1 

46R 1 - 4  --4 4 

50R 1 
3 - 3  2 - 2  - 2  2 

1 

51R 1 - 2  - 1  - 1  2 2 2 2 
1 

3 - 3  2 - 2  - 2  2 
1 

54R 1 



Elementary  Reversib le Cel lu lar  A u t o m a t a  

Table II. (Continued) 

383 

Rule b l = b  z b 3 = b  4 b 5 b 6 b 7 b 8 b 9 blo bjl b12 

55R 1 - 2  - 1  - 1  - 1  2 2 2 2 
1 

59R 2 - 4  - 3  - 2  - 2  4 4 4 4 - 4  

73R 1 - 2  - 2  

77R 1 - 1  2 - 2  - 2  2 

90R 1 - 2  - 2  
1 - 1  

91R 2 - 4  - 3  - 2  - 2  4 4 4 4 - 4  
1 - 1  

94R 1 - I 

95R 1 - 1  

123R 2 4 - 3  --2 - 2  4 4 4 4 - 4  
1 - I  

126R 1 1 1 - -2  --2 - 2  - 2  4 
1 - 1  

127R 1 1 1 - 2  - 2  - 2  - 2  4 
1 - 1  

129R 1 - 2  - 2  2 
1 - 2  - 2  2 

1 1 --1 - 1  - 1  - 1  2 

131R 1 - 2  - 2  2 

139R 1 - 2  - -2  2 

179R 1 - 2  --2 - 1 - 1 2 2 2 2 
3 - 3  2 - 2  - 2  2 

219R 1 --2 - 1  - 1  - 1  2 2 2 2 --4 
1 - 1  

223R 1 - 2  - i  - 1  - 1  2 2 2 2 - 4  
1 - 1  

255R 1 - 2  
1 1 1 - 2  - 2  - 2  - 2  4 

1 - 1  
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values. All nontrivial solutions for the 88 representatives are shown in 
Table II, where absolute values for {bi} are chosen as simple as possible. 
When a representative of a class has such a quantity, other rules in the 
same class also conserve its variants transformed according to the 
symmetry property of the rules. 

Table II teaches one that an ERCA may have more than one additive 
conserved quantity and that conversely more than one rule may have a 
common invariant ~b. Moreover, a number of rules do not have any 
additive conserved quantities of the form (3.1). These facts reflect that this 
type of conserved quantity does not govern the dynamics of ERCAs as do 
the Hamiltonians in mechanics. 

It is found that a certain additive conserved quantity ~b is not 
invariant, but is periodically varying in time for a number of rules. This is 
a consequence of the complement symmetry mentioned in Section 2. 
Details are shown in Appendix A. 

Additive invariants in cellular automata were first studied by 
Pomeau. ~s'2~ Applied to the present case, his result says that if the function 
f (# ,  v, ~c) takes unity only when # - a v  + ~c = q with constants a and q, the 
additive quantity denoted by (bl, b2, bs, b6, b7) = (q, q, a, - 2 ,  - 2 )  (others 
not mentioned are zeros, which convention is used henceforth) is invariant. 
In Table I, rules 90R ( a = 0 ,  q =  1), 73R ( a =  1, q = 0 ) ,  36R (a-= - 2 ,  q = 2 ) ,  
and 22R (a = - 1 ,  q = 1) are such cases. This kind of quantity is also 
conserved in rules where f does not necessarily take unity if # - a v  + ~c = q.  

For example, rules 26R, 24R, 18R, 10R, 4R, 2R, and OR have the invariant 
(hi, b2, 66, by)=  (1, 1, - 2 ,  - 2 )  in common with 90R. Another case also 
has a similar sequence of rules. 

Table I contains more than Pomeau's type. For  example, quantities 
with nonzero parameters other than bt = bz, bs, b6, and by do not belong 
to Pomeau's type. Such additive conserved quantities are found in the pre- 
sent paper for the first time. These include antisymmetric [e.g., (b6, 67)= 
( 1 , - 1 )  for rules 90R, 91R, 94R, etc.] or asymmetric [e.g., ( b ~ , b z ,  b g ,  

bl~, b12) = (1, 1, - 4 ,  - 4 ,  4) for rule 46R] ones with respect to the reflec- 
tion or the exchange of variables between #'s and r while Pomeau-type 
invariants are symmetric for both operations. "Energy" does not usually 
have such a symmetry property. Though another name might better suit 
such quantities, I call them energy without distinction for simplicity. 

If a nontrivial solution exists for Eqs. (3.6a)-(3.6e), the equation of 
continuity is constructed at the same time. That is, flow can be defined so 
that the temporal variation of bond energy is written as the difference 
between incoming and outgoing flows 

Ft+l t l , (3.7) 
i . i+ 1 = F i ,  i+ 1 + J i  - J i +  1 
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where J~ is the flow at site i at time t given by the following function: 

= 1/4{2f~(1 - 2d~)[2bt + b3 + (2bs + bs) cr~ 

+ (2b~ + bg) ,~t+ 1 + (261o + b~) ,r';~r I + , ]  

+ 2(b6 - b7)(2a~+ 16~- ~r;- a~+ 1) 

+ (b, - bio)[2a~5~ + a'~+ i(1 + 2a~)(1 - 6~)] } 

+ const (3.8) 

where f'~ = f (a~  1, a~, a~+ 1)- It is easily ascertained that Eq. (3.8) satisfies 
Eq. (3.7) with the help of Eqs. (3.6). Note that Eq. (3.7) defines Ji up to an 
additional constant, which has to be determined by another condition, for 
example, that the ensemble average (J~) = 0 in equilibrium states. 

I address a number of remarks at the end of the present section. First, 
the quantity ~ is not affected by adding to the function F the terms 

cl(~i-~ri+l)+c2(6i-6i+l)+c3(~r~i-~r~+l~+~) (3.9) 

where c~, c2, and c3 are arbitrary constants. Correspondingly, the flow is 
modified by the additional terms 

(c2,- c l ) (a~-  6~) + (el + c3 ai)(1 - 2~i)f~ (3.!0) 

This arbitrariness has been already used in the argument for the number of 
parameters necessary for identifying F. 

Second, though I restrict the function F to be of variables on two 
adjacent sites, there is a possibility that a sum of local functions of more 
variables is conserved. Indeed, the fact that ~ ' = Y 4 { ( a ~ - # l + l ) 2 +  
(6~-a~+1) 2} has period two in a number of rules means that such rules 
conserve ~ ' +  ~b '+I and lqs'+ 1_ r which are represented using variables 
at time t as 

~ ' + q ~ ' + l = 2 ~ { ( 1 - 2 6 ~ ) ( 1 - a ~ _ l - a ~ + l ) ( f ~ - l ) + 1  } (3.11) 
i 

Iqs~+l-~bt l=2 Z ( 1 - 2 6 ~ ) ( 1  (3.12) 
i "  

Each term in the above summations is a function of variables on three 
adjacent sites. In addition, the existence of local conservation laws 
involving more than two sites, discussed in the next section, implies that 
this kind of additive conserved quantity may be commonly seen. Since 
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thermodynamic behavior should be strongly affected by the existence of 
such quantities, it is worthwhile to seek them. When many variables are 
involved, however, straightforward calculation as in the present section 
becomes a hard task. Thus, this problem is left for the future. 

Finally, in order for the summation to be conserved, the summand 
need not be homogeneous in space. It may alternate on successive bonds. 
In peripheral rules (18) where f (# ,  v, x) does not depend on v, an orbit is 
decomposed into two independent parts in the (i, t) plane like the black 
and white of the checkerboard. Thus, an additive invariant, if any, can be 
defined on each color of the checkerboard and the summand necessarily is 
alternate. The peripheral rules belong to the classes [-OR], F5R], [10R], 
[15R],  [90R],  [95R],  [165R], [175R], and [-255R]. 

4. LOCAL CONSERVATION LAWS 

It frequently occurs that locally defined quantities themselves are con- 
served as welt as their sum over sites. This is called a local conservation 
law. (21) Figure 1 illustrates such an example in rule 73R, where once the 
three-site sequence 

O" i 0 " i +  1 0 " i  + 2 , /  1 

is present for some i, it continues to exist at the same place. Conversely, if 
a series of three sites does not show the above sequence at some time, it 
will never appear there. Accordingly, the quantity ( 1 - ~ r i ) ( 1 - 6 i )  
O - i + 1 ~ i + 1 ( 1 -  0 " i + 2 ) ( 1 -  ~ i + 2 )  is conserved for each i. 

A local conservation law often causes walls which partition the system. 
In Fig. 1, the  left and the right of the above sequence cannot communicate 

18{ 

Fig. 1. 

RULE= 73 R SIZE= 18~ 
1 3 ~, "- ei'n.';';:., ~;i" . . . . . . .  o . .  i" ~u n . . . . . . . .  - '  ~ ",-~y.-:{n ";u �9 " .  :" = , ffna;.'n . . . . .  ... = . ( 0 . ~  

ili~'~,",~ . . . . . . . . . . . . . . . .  "" ~." 

i 
.... ~::~!..:..~&,~.~.~;~c~]~:~.~).::..~.~,~ . . . . . . . . . . . . . . . . . . .  %u...... o.:..-..:~-~,,.o:.~.:,...~t#,;,:,.....b.~....c~#_-~g~v~=..<,~,v~.~,D..~. ~ 

i ! i . .  .................. , ~r . 

0 t 6@0 

An orbit  {a~} genera ted  by rule 73R. Dot s  signify a~ = 1 and  b lanks  signify a~ = 0. 
F ou r  walls are seen. 
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any information through the sequence. If a temporally fixed or periodic 
pattern appears like this at a fixed position irrespective of its surroundings, 
it is called a wall. Some simple examples of the walls are illustrated in 
Fig. 2, and Table III shows the rules exhibiting them. Since every kind of 
sequence appears with some probability in a random initial configuration, 
a sufficiently large or an infinite system of such a rule is almost surely 
divided into a number of mutually noninteracting parts by walls. Such a 
system cannot show the mixing property. Thus, the walls prevent the 
statistical mechanics from being realized in principle. 

Besides the rules shown in Table III, rules 27R and 59R have some- 
what complicated walls. These rules have a common local conservation law 
which classifies all the two-site sequences into the two subsets 

L:)(~ 'o) 
o,)(I ;)} (4.1) 

(4.2) 

�9 0- "I. -00- .ii- "!O. 

�9 0" "i" "00. "II. "10- 

(i) (ii) (iii) (iv) (v) 

" 0 1 -  �9 0 1 0 .  - 1 0 1 "  . 0 1 1 0 .  

�9 0 1 .  �9 0 1 0 "  �9 i 0 1 "  �9 0 1 1 0 .  

(~i) (~ii) (~i) (~) 

�9 ii" .0- .00" -00. 

�9 00- -0. -01- .I0. 

-il. .I. .i0- ~ 

(x) (~) (xii) (~ii) 

Fig. 2. 

�9 0 .  . 0 0 ,  - 0 1 ,  

�9 0 .  - 0 0 .  " 0 1 -  

�9 i .  - i i .  " l O .  

�9 I ,  " i i .  . i 0 .  

(~v) (xv) (xvi) 

Examples  of wall configurations.  Site number  i increases from left to right, and time 
t downward .  Dots  mean arbitrary configurations.  
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Table  III. Examples o f  the  W a l l s  a 

Wall Period Rules 

(i) 1 OR, 4R, 12R 
(ii) 1 0R, 1R, 2R, 3R, 18R, 19R, 33R, 35R, 50R, 51R 
(iii) 1 0R, 4R, 12R, 36R 
(iv) 1 0R, 1R, 2R, 3R, 4R, 5R, 6R, 7R, 18R, 19R, 22R, 23R, 

33R, 35R, 36R, 37R, 38R, 39R, 50R, 51R, 54R, 55R 
(v) 1 0R, 1R, 2R, 3R, 9R, 10R, llR, 129R, 131R, 139R 
(vi) 1 0R, 1R, 129R 
(vii) 1 OR, 1R, 9R, 73R, t29R 
(viii) 1 0R, 1R, 2R, 3R, 18R, 19R, 129R, 131R, 147R 
(ix) 1 OR, 1R, 4R, 5R, 129R, 133R 
(x) 2 4R, 36R 
(xi) 3 51R 

(xii), (xiii) 3 51R, 179R 
(xiv) 4 255R 
(xv) 4 219R, 223R, 255R 
(xvi) 4 126R, 127R, 255R 

a For each of the wall configurations in Fig. 2 its period and rules exhibiting it are shown. 

and  only sequences be longing  to one of these are seen at  a fixed posi t ion.  
Cons ide r  a series of n sites where each couple  of ad jacen t  sites shows a 
sequence in F a. Then,  only  the fol lowing six sequences are a l lowed to 
appea r  on such an n-site series: 

(:: ::: ;:::::)(o ~ ::: Oo) ' (01 ::: o) (~o 

(I 0 "'" 1 ii ~ (1 o 5 (~1 ~ , ~oli~ ~o) 

i~: lo) 
(4.3) 

All these sequences are homogeneous  except  for the lef tmost  site. Because 
f ( 0 ,  0, 0 ) =  1 and  f (1 ,  1, 1 ) = 0  in rules 27R and 59R, orbi ts  { ~ }  inevi tably 
behave  l ike the fol lowing on such an n-site series: 

�9 0 0 

�9 0 0 

�9 1 1 

�9 0 0 

" ' "  0 

�9 " "  0 

�9 " ~  0 

�9 0 0 - . -  0 

�9 1 1 . - .  1 
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where time goes downward, i increases from left to right, and asterisks 
mean arbitrary symbols. Thus, except for the leftmost site, such an n-site 
series shows period three in time irrespective of the surroundings. This is 
the wall in rules 27R and 59R. 

There are two rules which have a local conservation law but no walls, 
namely 24R and 46R. In these rules the propagation of energy is still 
inhibited. Rule 46R has the energy (bl, b2, b9, b11, b12) = (1, 1, - 4 ,  - 4 ,  4), 
that is, the bond energy is written as 

F~,i+ l = a ~ + a ~ +  1 + 6 ~ + 6 ~ + i - - 4 ( a ~ + ~ )  a~+ I~+~ +4a~a~+,#~+~ 

(4.4) 
The following gives the identical additive quantity q~t, 

F~,i+ ~ = 1 - (1 - 2cry- 2 ~  + 2a~d~)(1 - a~+,ffi+ 1) (4.5) 

by the help of the arbitrariness of the additional terms (3.9). The flow 
corresponding to the bond energy (4.5) is given by 

J~ = 2(1 - ~)(1  - ~;)(1 - ~ +  l ) f~  (4.6) 

However, since f (0 ,  0, 0 ) = f ( 1 ,  0, 0 ) = 0  for rule 46R, the above J~ indeed 
identically vanishes. Thus, the bond energy (4.5) itself is conserved for each 
bond (4 i + 1) and the initial arrangement of the energy does not change. 
Accordingly, no energy propagation can occur. 

Things are more subtle in rule 24R. In this case, the energy of bond 
(i, i +  1) at time t is given by 

F~,i+ 1 = ( a ; -  6;+ 1) 2 -]- ( ( ~ -  0"~+ l) 2 (4.7) 

and the flow at site i at time t is given by 

J~ = (1 - 2ff~)(1 - 2a~+ ~)f(a',_ 1, a~, a;+ 1) (4.8) 

The local conservation law for rule 24R classifies all two-site sequences into 
the two subsets 

;+={(;; :;::)~(o ~ o)(: ~o)(Oo :)(~o '0), 

F 
= 0.i. 0"i+1 ] 

(~ ~ ~ ~ 1 10)(I ;)} ,49, 
( :  00)(; :),(0 00)(~ ~ 0), 

822/56/3-4-10 
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and, similar to the case of rules 27R and 59R, a series of two sites can only 
show sequences in either of the above two subsets. Consider a series of 
three sites ( i -  1, i, i +  1), where the two-site series ( i -  1, i) belongs to F+ 
and (i, i + 1) to F . Twenty sequences are able to appear in such a three- 
site series. Out of these sequences, only the following can transfer the 
energy, i.e., have nonzero flow J~ ~ 0: 

1 0 

o ,Oo) i) ,4( 0 
where J~ = 1 for Sl and s2, and - 1 for s3 and s4. The point is that if the 
three-site series shows s3 or s4 at some time, it inevitably evolves into s I or 

(4.11) 

$2, respectively, at the next time step. Conversely, the only possible prede- 
cessors for s 1 and s2 are s3 and s4, respectively. This imposes the following 
constraint for the transfer of the energy: If an energy passes through site i 
at some time, it must move back in the opposite direction at the next time 
step. Hence, the energy cannot propagate in substance through such a site. 
Things are similar if ( i -  1, i) belongs to F and (i, i + 1) to F+ .  On the 
other hand, if ( i -  1, i) and (i, i +  1) belong to the same set, the energy can 
transfer through site i. Thus, in rule 24R, although bond energies do not 
directly give local conserved quantities, the energy propagation is still 
prevented. 

The existence of a local conservation law is equivalent to a lack of 
n-site sequences appearing at a fixed position in a run starting from an 
arbitrary configuration. In a rule without a local conservation law, all the 
4 n sequences can appear; in other words, the value of the spatial set 
entropy (22) is unity for any n. In contrast with this, in a rule with a local 
conservation law, the set of n-site sequences with some n is classified into 
a number of subsets and at a fixed position there only appear sequences 
belonging to one among them. 

This situation can be represented in terms of a transition matrix as 
follows. An n-site sequence xn = (al,..., o-n, dl ..... r  evolves in unit time 
step into one of the following sequences: 

{(f(~,a~,a2)XORd~,...,f(a,_~,a,,fl)XOR~n,a~,...,a,): ~ , f l~{0 ,1}}  

(4.12) 

the number of which is at most four. If the evolution from xn to x'n is 
allowed in the above sense, one sets the element Tx,.x; of the 4" • 4 n matrix 
T unity, and zero otherwise. Then the existence of a local conservation law 
is equivalent to the reducibility of the transition matrix T. 
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Examination of the above property has been carried out for the 88 
classes of the rules. The result in the case of n = 4 indicates the existence of 
a local conservation law for 44 classes of rules, which have already 
appeared in Table I I I  or in the text, and the lack of it for the remaining 44 
classes. The result does not change for n = 5 and 6. When n < 4, however, 
one fails to notice the existence of a local conservation law in rule 133R, 
where the sequence 

O" i 0-i+ 1 0"i+ 2 O'i+ 1 1 

acts as a wall. These observations strongly suggest that the latter 44 classes 
are not accompanied by a local conservation law for any n. I conjecture 
that in general a family of reversible cellular au tomata  of the Fredkin con- 
struction type has a threshold size of block determined by the interaction 
range such that if a rule in the family does not show a local conservation 
law for that block, it has none for any size of blocks. In the case of ERCAs 
the threshold is given by n = 4. This is the same as the statement that a 
local conservation law is literally a local property of a rule. If this conjec- 
ture is true, one can determine whether a local conservation law exists or 
not by a finite procedure. Though this conjecture seems plausible, I have 
no mathematical  proof  for it. 

Both the existence of an additive conserved quantity (energy) and the 
lack of local conservation laws are necessary for statistical mechanics to 
hold. Rules potentially satisfying both these conditions are listed in 
Table IV along with their energy functions F. These rules do not have any 
local conservation laws at least up to n = 6 and never if the above conjec- 
ture is true. It is numerically observed that the energies can propagate 
indefinitely in these rules. Note that all these functions only take three 
possible values [0, 1, 2 for energies (a) and (b) and - 1 ,  0, 1 for (c) and 

Table IV. Rules with Propagative Energy ~ 

Rules Additive invariants: F(cq fi, c~, fi) 

26R 
90R 

91R, 123R 
77R 

94R, 95R 

(a): (a-/~)2 + (~-fl) 2 
(a), (d): ~3-c~/~ [or (~-3)  2 .  (~-/~)2] 

(b): 1 +c~d+fl/~- [1 -2(1-cQ(1 -f i ) ] [1-2(1 -~)(1 -fl)] and (d) 
(c): ~fi(1 - %2 - 2fl) - c~fl(1 - 2a - 2/~) 

(d) 

Rules having an additive invariant of the form (3.1) but no local conservation laws. Energy 
(d) is shown with two kinds of representations. 
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(d)]. Furthermore, (a) and (b) are symmetric with respect to the reflection 
and the exchange of variables (c~,/3) ~ (c~, fi), but (c) and (d) are antisym- 
metric under either of these transformations. These rules are extensively 
investigated in the subsequent papers concerning thermodynamic proper- 
ties. 

5. PHASE SPACE STRUCTURE 

The phase space for a finite ERCA is divided into a number of cycles 
under the periodic boundary condition, because the number of distinct 
states is finite and the time evolution is reversible. Hence, the distribution 
of cycle lengths provides fundamental information about the phase space 
structure and ergodic nature of ERCAs. In this section, I discuss system- 
size dependence of the distribution, particularly of the number of cycles 
and the mean cycle length (the expected value for the cycle length). Since 
additive rules and their complements have a distinct property, they are 
treated separately from others. 

Additive rules satisfy the additive superposition law, that is, if {a t } 
and {~t} are two orbits in such a rule, {a t XOR p'} also becomes an orbit 
in the rule. The complements of additive rules also show a type of super- 
position law, as discussed in Appendix A. By virtue of these superposition 
laws, there is an algebraic method with which time evolution of a given 
initial configuration is written in a compact form and in turn the distribu- 
tion of cycle lengths can be obtained. (23) However, it may be actually too 
hard to be carried out in the present case. Then I made simpler use of the 
additivity. In such a rule, the orbit starting from a basis configuration for 
the superposition law, where only one element of {ai} or {~i} is unity and 
others are zeros, gives the common fundamental cycle length. And a cycle 
length becomes short only when some degeneracy occurs. Thus, the 
maximal cycle length for each value of size N is easily obtainable with a 
numerical method. I carried this out for systems with size N <  29. The 
result shows the following three types of behavior. First, rules OR, 51R, and 
255R have the cycle lengths independent of N, because the time evolution 
of variables on each site is independent of other sites in these rules. 
Second, rules 15R, 60R, 105R, and 153R show an apparently irregular N 
dependence, reflecting some number-theoretic property of N. Figure 3 
illustrates the case of rule 15R. Lastly, the maximal cycle lengths in rules 
90R and 165R show globally linear increase in N, though having some 
local structure. Since the volume of the phase space is 4 N, in the first and 
third cases the number of cycles shows exponential increase of order O(4 N) 
and O(4N/N), respectively. 

Rules other than the above have no such useful properties. For 
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Fig. 3. Maximal cycle length as a function of system size for rule 15R, exhibiting number- 
theoretic irregular behavior. 

systems with relatively small size N, however, it is still possible to 
investigate all the states in the phase space to enumerate the cycles exactly. 
In this way, the distributions of cycle lengths were obtained for the 88 
classes with N ~  13. As a result, it has been found that for almost all rules 
except those showing the number-theoretic irregularity mentioned above, 
the numbers of cycles commonly increase exponentially like 2 N~4 N. In 
particular, it is O(2 N) for rules with no (additive or local) conservation 
laws. See Fig. 4. On the other hand, the mean or maximal cycle length 
shows a rich variety of N dependence from constant to exponential. The 
exponential increase of the number of cycles is large compared with the 
average number of cycles for random substitutions, (24) which predicts the 
logarithm of the phase space volume, accordingly linear increase in N. That 
the exponential increase is commonly seen is probably due to the time- 
reversal invariance of ERCAs. This is suggested by the fact that Wolfram's 
elementary rule 45, which is reversible but not time-reversal invariant in 
case Of odd N, shows the mean cycle length of o(2N), proportional to the 
phase space volume in this case. The number of cycles in rule 45 seems not 
to increase as fast as in ERCAs. 



394 Takesue 

104 

10 3 

10 2 

I I 

/'--.>, 

,,/ 

5 10 N 

Fig. 4. Number of cycles for three rules having no additive or local conservation laws, 30R 
(dotted line), 75R (solid line), and 155R (broken line). The straight line represents 2 N. 

The exponential increase of the number of cycles has a significant 
meaning for the ergodic nature of ERCAs, because this fact indicates that 
a finite ERCA is not ergodic in the strict sense. The number of possible 
values of an energy (additive conserved quantity) is proportional to N. 
Hence, if a rule has more than one energy, the number of possible values 
for the energies is at most a constant times a power of N. The exponential 
increase, therefore, means that a huge number of distinct orbits coexist on 
an energy surface. This means the lack of ergodicity in the strict sense. 
Though a set of local conserved quantities may be used to label the orbits, 
thermodynamic behavior cannot be expected for such rules, as has been 
discussed in Section 4. 

The above nonergodicity does not necessarily indicate the absence of 
thermodynamic behavior of the models. It is mathematically proved that 
the noninteracting ideal gas is nonergodic in finite systems but Bernoulli 
(accordingly ergodic) in an infinite system. Such a recovery of ergodicity in 
an infinite system may be expected also in the case of ERCAs. Indeed, rule 
90R can be identified with a kind of noninteracting ideal gas system 
because a unit of the energy (a) in Table IV moves with velocity • 1 
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irrespective of other units of the energy. (6) If the recovery of ergodicity 
really occurs in ERCAs, thermodynamic behavior will be realized in some 
respects in a large system. 

6. S U M M A R Y  A N D  D I S C U S S I O N  

In this paper I have presented a family of one-dimensional reversible 
cellular automata named ERCAs and investigated basic properties in 
preparation for the study of thermodynamic behavior of large systems. 
After the classification according to symmetry properties, energy was intro- 
duced as an additive invariant of the form (3.1). The existence of a local 
conservation law, which prevents the realization of statistical mechanics, 
was examined for each class of the rules. In this way rules which have at 
least one additive conserved quantity but no local conservation laws have 
been selected as hopeful candidates for thermodynamic behavior. The 
distribution of cycle lengths was investigated by exact enumeration for 
relatively small systems, which has revealed the coexistence of a huge 
number of orbits on an energy surface. 

Symmetry and conservation laws are the most fundamental properties 
for all physical systems. Thus, the results obtained here will provide basic 
data for any study using ERCAs. For example, a nonadditive rule possess- 
ing no additive or local conservation laws generates a pattern {~} charac- 
teristic of the rule, which does not depend on the initial conditions so 
much. On the other hand, patterns generated by rules possessing conserva- 
tion laws strongly depend on the initial conditions. 

Though I have obtained the complete list for the additive conserved 
quantities of the form (3.1), there are possibilities for other types of 
additive invariants to exist. Table II is obtained through a straightforward 
calculation, but the search in this manner becomes tedious when more 
quantities are involved. Thus, to proceed further, one must solve the 
question of what algebraic property is the origin of additive conserved 
quantities. 

The distribution of cycles predicts the nonergodicity of ERCAs. The 
coexistence of cycles on an energy surface means that there exists some 
conserved quantity other than ~. For example, if different values are 
assigned for different orbits, the values are conserved. However, such a 
quantity is not necessarily an additive one and may not even be written in 
a compact form. Thus, it is possible that every such orbit shows a similar 
behavior with regard to thermodynamic quantities. F~arthermore, since the 
present result is obtained for relatively small systems, there remains the 
possibility that the size dependence of the cycle distribution might change 
in large systems. 
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The rules in Table IV have additive conserved quantities with which 
statistical mechanics can be constructed. Moreover, no local conservation 
laws are found for these rules and there seems nothing to inhibit the energy 
propagation. Thus, thermodynamic behavior may be expected. In the sub- 
sequent papers, these rules will be investigated with respect to equilibrium 
and nonequilibrium thermodynamic behavior. 

A P P E N D I X  A. THE S Y M M E T R Y  OF C O M P L E M E N T  

Rule f R  specified by the Boolean function f is said to be the comple- 
ment of rule f R  if the functions are connected by the relation f =  1 - f  
Hereafter the bar denotes the binary complement operation for the 
Booleans. In contrast with the reflection and the Boolean conjugation sym- 
metries, the complement does not generally yield isomorphisms between 
rules. In cases that a certain condition is satisfied, however, it brings such 
interesting consequences as some correspondences between orbits in even 
or odd rules, a periodically varying additive quantity for a group of rules, 
and some kinds of superposition laws for orbits in the complements of 
additive rules. In this Appendix, I explain these in order. 

First, I discuss the orbit correspondence in even and odd rules. Let 
rules hR and hR be the rule conjugate to f R  and its complement, respec- 
tively. Namely, h(#, v, ~c)=f(fi,  ~, r and h = 1 - h .  Then, for an orbit {a t } 
in rule fR ,  the following equations hold: 

6 t + l  = f ( C )  X O R  a t - 1  

= {'(6 t) XOR 6 t -  1 

= h(C) XOR 6 ' -  1 

= h(a t) XOR a t -  ~ (A.1) 

Hence, if a set {k'} is defined by 

k t = C  for t = 0 o r l ( m o d 4 )  
(A.2) 

k t = a  t for t = 2 o r 3 ( m o d 4 )  

these k t satisfy 

kt-~ 1 = {(V) XOR Z' 1 

~,+1 = fi(~/) XOR k t-1 (A.3) 

This is a general relation valid for any reversible cellular automata of 
Fredkin construction type. 

for t = 0 o r l ( m o d 4 )  

for t = 2 o r 3 ( m o d 4 )  
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In the case that the rule is invariant under the Boolean conjugation, 
that is, h = f ,  Eq. (A.3) implies that {k'} is an orbit in rule fR .  Rules 
possessing this property are said to be even or self-conjugate. (11) As found 
from Table I, the self-conjugate classes and their complements are the 
following six pairs: 

[OR] ~ [255R1, [24R] ~ [189R], [36R] ~ [219R], 
(A.4) 

[60R] ~-, [153R], [90R] <---, [165R], [126R] ~ [129R]. 

A pair of these corresponding rules has similar phase space structure. This 
is because periods of corresponding orbits are not necessarily the same, but 
are connected by the following relations: If period T for an orbit is odd, 
that for the corresponding orbit is 2T or 4T; if T is a multiple of four, 
the corresponding period is T or 7'/2 or T/4; and if T =  2 (mod 4), the 
corresponding period is 2T or T/2. These relations are a direct result from 
Eq. (A.3). 

Self-conjugate rules have another correspondence. Consider the 
case that the number of sites N is even and the system has the periodic 
boundary condition. The (i, t) plane is divided into two parts like the 
checkerboard according as i + t is even or odd. If one applies the Boolean 
conjugation on one part of the checkerboard, i.e., 

p ~ = a  i' if i + t = e v e n  

p ~ = a  it if i + t = o d d  
(A.5) 

then {p'} becomes an orbit in rule gR where the function g is defined by 

g(#,v, x )= f ( f i ,  v, ~ ) = f ( # ,  ~, x) (A.6) 

The second equality means the self-conjugate condition. This transforma- 
tion yields the correspondences between the classes 

[36R] +--, [129R], [60R] ~ [153R], [126R] ~-> [219R1 (A.7) 

and other self-conjugate classes have rule correspondences within each 
class. Each pair of rules in (A.7) has an identical phase space structure 
when N is even. 

Equation (A.1) yields another useful transformation. If a set {~(t} is 
defined from {~' } by 

Z~=* ' for t = O o r  1 (mod 3) 

Z'=~r '  for t = 2 ( m o d 3 )  
(A.8) 
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it satisfies the equations 

Z,+ i = ~(;() XOR Z ' -  i 

Zt + 1 = fi(Z') XOR Z t -  1 

This is also a general relation. 

for t = 0 o r l ( m o d 3 )  
(a.9) 

for t = 2 ( m o d 3 )  

If the complement coincides with the conjugate, namely h = f ,  {?(} is 
an orbit in rule fR .  Rules with this property are called odd. ~1) There are 
six classes of odd rules. In addition, the conjugates coincide with the reflec- 
tions of complements in two classes, which should be included in the odd 
case. Thus, the odd classes are 

[15R], [23R], [29R], [43R], [-51R], [57R], [77R], [105R] 

(A.10) 

where [29R] and [57R] are the latter cases. Contrary to the self-conjugate 
cases, the orbit correspondence between odd rules is limited within the 
same class. 

It should be noticed that the complement symmetry yields the corre- 
spondences between orbits with the same initial configuration in both the 
even and the odd cases, while the orbit correspondences based on the 
reflection or the Boolean conjugation symmetry are between orbits with 
transformed initial conditions. 

Next, I discuss a relation between the complement symmetry and an 
additive quantity. For some rules a periodically varying additive quantity 
can be found by utilizing Eq. (A.3). Consider the case that ru les fR and/~R 
have a common additive conserved quantity ~(x). Then, from Eq. (A.3), 
~b(V, fd )=  const, which means that q~(nt, 6~) is periodic with period at 
most four. Furthermore, if �9 is self-conjugate, i.e., ~(2~) = ~(x), the period 
becomes at most two. This is the case for rules 165R, 167R, 175R, 183R, 
189R, and 191R with q~(x)=~i{ (c r i -~ i+ l )z+(# i -~r i+ l )2} .  As is stated 
in Section 3, this ~b is conserved for the rules in classes [-90R], [26R], 
[24R], [18R], [10R], [4R], [2R], and [OR]. For example, the comple- 
ment of rule 167R is rule 88R, which belongs to class [26R], and the 
conjugate of the complement is rule 26R itself. Similar things are realized 
in other cases. 

Finally, superposition laws utilizing the complement property are 
considered. When the function f is written with XOR only, rule f R  is 
called additive. By this definition, an additive rule is necessarily either 
even or odd. Thus, Eq. (A.2) or (A.8) transforms an orbit into one in the 
complement rule and vice versa. Utilizing this fact, one can derive a kind 
of superposition law for the complements of additive rules as follows. 
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Let {n'} and {[I ~} be orbits in the complement of an additive rule, and 
{g~} and {g'} be their transforms given by Eq. (A.2) or (A.8) according to 
whether the rule is even or odd, respectively. By the definition of the 
additive rule, {g 'XOR la t} is also an orbit in the rule. Then the inverse 
transformation of {g' XOR g'} yields the following superposition laws for 
the complements: From two orbits {n t} and {[~}, an orbit {~/~} is 
generated by 

7' = ~ XOR [1' for t = 0 or 1 (mod 4) 
(A. t l )  

7' = ~t XOR [Y for t = 2 or 3 (mod 4) 

for an even case, and by 

"~ = nt XOR [i' for all t (A.12) 

for an odd case. In the even classes (A.4), [OR], [60R], and [90R] are 
additive and [255R], [153R], and [165R] are their complements, respec- 
tively. In the odd case, classes [15R], [51R], and [105R] contain an 
additive rule and its complement in each. 

APPENDIX  B. DERIVATION OF (3.6) 

In this Appendix, I show that Eqs. (3.6a)-(3.6e) are the necessary and 
sufficient conditions for Eq. (3.1) to be invariant, i.e., 

& b t -  q ~ + l -  05~= 0 (B.1) 

where ~ = Z i F ( ~ , a ~ + l , 6 1 , 6 ~ + l ) .  Representing the variables at time 
t +  1 by those at time t and substituting the general form (3.5) for F into 
Eq. (B.1), one has 

c ~  = 2 { 2 ( h i  - b 2 ) ( r T i -  o-i) + (6  3 - b4)((Ti(~i+l -- (Ti(Ti+ 1) 
i 

§ ( b 6 -  b7) ( f f i~  + t - -  ffi~i+ ~) 

+ (b8 - b~o) o-iG (di+ ~ - ai+ 1) + (b9 - b~l) ai+ ,~G+ ~ ( ~ -  ~ )  

+ (1 - 2 d i ) f i [ 2 b  I +b3(6~ ~ +6~+~)+2bsa~+b6cri+~ + b 7 6 i _  1 

+bs( f f i  l ~ i _ l  +~7 iJ i+ l ) - t -bg (~ i~ i_ l  +cr~+ldi+l)+bloa~cri+l 

+ hi1 o i -  1 o i  -k b 12(o-i_ 1 f f i~ i -  l + (Tiffi+ i d i +  1 ) ]  

+ (1 - 26g)( 1 -- 26g+ ~ ) f,.f~ + ~ [b3 + b s ~  + b9 ~r~,+ ~ + b~2~,crg+ 1 ] } 

(B.2) 
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where the index t is omitted to avoid confusion. Equation (B.1) requires 
Eq. (B.2) to vanish identically. In particular, the following has to be 
satisfied: 

( ~ ( ( ~ i  : 0)  - -  O ~ ( ~ i  = 1) 

= { - 2 ( b ~  - b~) - (b~ - b~)( ,~i+,  - o-~_ ,) 

+ (bs-blo) o-iai+l + (bg-b11) ai lo-i 

+ 2fi[2bl + 2bsai+b6~i+l +bTa,_l +bloaiai+l +bllai lgi] 

-- (1 -- 2~)f i+ l I-b3 -t- bscri + b9 o'i+ 1 -I- b12aiai + t] 

- (1 -2fi)f i_l[b3 + bs(r, 1 +b9o-i+ bl2o-i-lo-i]} 

-t- ffi 1{ - - ( b 3  - b 4 ) -  (bs - b l o )  ~  - ( b 9 -  b l l )  o-i 

+ 2 ( f ~ _ l - f i )  2 (b3+bso-i-1 +b9o-i+bt2o-i lo-i)} 

"~ (~i+i { - -  (b3 - -  b4) - (b8 - bw) o-i- (b9 - -  b l l )  6 i + 1  

-b 2 ( f i - - Z + l )  2 (b3 + bso-i-b b9o-i+1 + b12o-i+l)} 

= 0  (B.3)  

Since this must be identically zero, three curly brackets turn out to vanish 
separately. From the second or the third, one has a set of equations for 
{bi} as 

2(b3 + bso-i + b9~7i+ 1 + bl2o-io-i+ t ) ( f / - f / +  1) 2 

= b3 - b4 + (b8 - blo) o-i + (b9 - -  b l~)  ~  1 (B.4) 

If one puts at_ 1 =o - i=a i+ l  =o-i+2, the left-hand side of the above equa- 
tion vanishes since f~=f i+  1 in such cases. Thus, Eqs. (3.6b) and (3.6c) are 
derived. Substitution of Eqs. (3.6b) and (3.6c) into Eq. (B.4) yields 
Eq. (3.6d). The vanishing condition for the first curly bracket in Eq. (B.3) 
gives Eq. (3.6e) with the help of Eqs. (3.6b~(3.6d), though at this stage the 
term 2(b~-  b2) remains to be added to the right-hand side of Eq. (3.6e). 
The equations thus obtained are the condition for Eq. (B.3) to hold and 
only a necessary condition for 6q~ to vanish. Using Eq. (B.3) repeatedly, 
one has 

~05(~, ~ ) =  6 ~ ( ~ ,  ~ = 0) (B.5) 

By the help of this and the equations obtained above, one can rewrite 6q~ 
as  

6q5 = (b~-  b2 )~  (1 -2a~).. (B.6) 
i 
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For this to be identically zero, the condition (3.6a) is necessary and 
sufficient. Thus, one arrives at Eqs. (3.6a)-(3.6e). 
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